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The usual method of approximate calculation of electric fields [1] has
already been widely applled to the solution of various steady problems, in
particular, to the problem of a plane magnetohydrodynamiec channel, through
which flows a medlum possessing variable conductivity along the channel [2].
The variation of the electrical quantities with time have been studied by
similar methods only in the case of periodic variation of the magnetlc field
[3] or for an arbitrary law of motion of the medium [4]. In connection with
certain applications [5] there 1s interest in the study of channels in which
2 nonconductlng gas carrles with 1t separate conducting clots. The solution
is derived below for one of the simple problems concerning the distribution
of electric fleld in the channel with allowance for the perlodic variation
of conductlvity with respect to time and the longitudinal coordinate.

1. We shall consider, on the basls of reasoning in [1], the motion of an
isotropic conducting medium in a rectangular channel (Fig.1) placed in a
magnetic field. We shall suppose that the
6/6, veloclty of the stream v = e, U 1is
everywhere constant, the magnetic ficld
B (z, z) —e.Bx + e.B; 1is independent of
time, and that the conductivity of the
medium 1s a periodic function of time ¢
and of the coordinate x , represented
in the form (1.1)

0 =0y (z— Ut) =0p(x+ +— Ut
If the magnetic Reynolds number A,

is small, while the ratio of the transverse dimension of the channel to A

1s a guantity of smaller order than R3!, then the induced magnetic fileld

and its derivatlve with respect to time can be neglected in Ohm's law and

Maxwell's equations. Then the electric field 1s quasi-steady and 1its poten-

tial o will depend on the time as well as on a parameter.

Fig. 1
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For the potentlal ¢ and the current J , averaged wlth respect to =z
assumlng the walls of the channel to be nonconducting, we can write

0% %

Y’ , o9 . 0P UB
622+3y2+ ,‘p az "_O, ]xz—‘s'%, ]u:_c('a_:l/“"*——c_) (1‘2)

i

where B = Byf(x) is the distribution of the z-component of the magnetic
field averaged with respect to z'.  We shall assume moreover that 7(x),
together with its derivatives up to the second order, tend to zero as [x|=e,

The boundary conditions for ¢ have the form

o¢ UB

s for y=+86, V@0 for [z]—00 (1.3)

We introduce the auxiliary potential @ = ¢ -+ UBy/c, satisfying the
inhomogeneous equation of type (1.2) and the homogeneous boundary conditions.
Taking as the units of length, time, potential and current the quantitiles
8, AU, UBO(S | ¢, 6,UBy/ ¢ ,respectively, we obtain instead of (1.2) and
(1.3) 0

” , oo , o
"0z + 6y2 +F _(f + Ff)y, ]x='—"~p'$7 ]yz—\p—a? (14)
oo
—6_520 for y= 41, V(D"’O for |z | o0 (15)

($=v@E), F=v/¢, E=z—Vi V=0»A/9)
The solution of the problem will be sought in the form of the expansion

D= h}} @ (x, t)sin oyy, o = 1 (k —1/2) (1.6)
By the usual method flrom (1.4) we obtain
O, + FO — 2Dy = ox (' + Ff), o= 2(—1)F1ay?
O —>0  for [z]— o0 (1.7)
The solution of the problem (1.7) can be expressed by means of tabulated

functions only for isolated particular cases of the function y(g) , one of
which will be considered below.

2. Suppose that the conductivity of the medlum is determined by Formula

y = cos®ge and then V = m/g8 . Equation (1.7), taking the form
(Dk — 2Cpklﬁ tan ﬁE — ak‘"CDk = Wk (f” — 2f'ﬁ tan ﬁE) (21)
has the general solution when a,# B (2,2)

S (e N e T L

o
a

Qx (s, t) e %Pods ]}

T3 R

Q= — 5 B[f”(s)cosBC—-—2f ($)BSInBL] (L=s—Vt, 12 =232 —1)

It is easy to see that when f io and the arbitrary choice of the con-
stants C,, Dy, @ and b , the solution (2.2) does not satisfy the condition
@ - 0 when |x| - = , since it has poles at the points x,= vt+n{on+1)/28
for all the values n = 0, = 1, + 2, £ 3, ... (with the exception, perhaps,
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of certain of these values). Accordingly, when f iconst there does not
exist a solution of the problem {1.7), continuous and bounded for

r € (— oo, o), if F(g) ~ tan g . It 1s essential to assume that the
solution will not exist also for a different choice of F(g), if F(2) has
at the points ¢, singularities of the type (f — Ea1e, a >O.

On the other hand, we can attempt to construct a bounded but discontinuous
solution of the problem (1.7), considering separately each interval [xy.q,x.]
and choosing therein different values of the constants ¢,, D, from the con-
dition of boundedness of the sclution at the ends of the interval,

Suppose that z & [Zp-1, Tnl. Let us set & = Zp, b == Tny 1in (2.2) and
introduce the notation

G (2, £) = Sgk(s, 1)e Wds,  Huy (2, £) = & Qi (s, 1) e¥ds  (2.3)
Xy Xn-1

The functlons G, , #, 4are defined and continuous in the interval [x.q,x.].
Setting (2 2) 4in the form

Oy, = =3 Bi [{Cox— Gor) 6?"3’ -+ (an -+ an) e_YkB;}y T & [Zne1, Enl (24)

let us require that the numerator vanishes when x = x,.; and x = x, v
is not difficult to see that for this it i1s necessary to take

Cre = — (28207 ) ™ (G (1) €4 o+ Hog (20) € 67"

Dy = (zm“"(k)—l [Gak (J;n-l) e¥x™" + H oy (%n) e—.{knl (25)
Now @y (Zn-1), Dk (z,) are bounded, since both the numerator and the
denominator of {2.4) have first order zeros at these points. In addltion to
this, the limiting values of @y (zn — 0) and @y (2, 4 0) may not coincide
if we do not impose speclal limitations on the field distribution f(s)

We shall show that the solution (2.%), {(2.5), which is discontinuous in
the general case, satisfiles the conditions when |x| - « ', which for a fixed
value of time ¢ can be written in the form

lim @y {z & [%4-1, Ta]} =0 (2.6)
nf—co

In fact, from Formula (2.3) there follow the inequalities

Gax (2) | <<

!(ﬂg‘

¢ WM 4 2800), | Ho ()| < 2 e O (O 2000)

2.7)
M, =max|f"(s)|, M:=max|f (s)!l, s& [wn1, £a]

Hence, taking into consideration (2.5), we find that when 2z € [Zj.q, Zal
and n - = , the function |(,; — G {x) tends to zero more quickiy than
e k"% whilst | Dy -+ Hyy (x)] is bounded or tends to infinity not more
quickly than e”"“f;‘_x, This deduction is based on the assumption concerning
the decrease of M,,, as & - « , which was stipulated in Section 1.
Referring now to (2.4}, we see that both terms of the numerator tend to zero
1ike M,+ 28¥, as n ~ ® . Therefore &= O also as n-=, if T & (Zn-y, ZTn)»
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The decrease In & at the ends of the segments when n - = 1s easy to prove,
if we calculate first of all &, {(x, + O), applying 1'Hbdpital's rule and the
relations (2.3),(2.5)

Hm @ = (——1)'&7’: {[an + ;P (xn)] 6~Ykagn —_ aneYkBEn}

x>, —0
Ep=2,—V1) (2.8)
lim @ = (—1)" Tx {Dnyr, 16 %50 — [Cryt,k — Gri (2a)] €40}
x»xn-i-o
Similar considerations apply alsc when n - — = , Accordingly, Formulas

(2.3),(2.5) define a bounded solution of the problem (1.7), which satisfies
the conditions at infinity and is continuous in each interval (x,.;, X, ).
If we consider the behavior of ¢, atafixed point x , then to the con~
tinuous increase of time ¢ there will correspond a decrease in the integer
argument »n {with the notation in the form (2.4)). The interval of time,

in the course of which the point x ©belongs to the segment [x,.,, x,]1, 1s
determined by the lnequalities

—:;—[:::—-—%(23—{— 1)}<\:z<~é—[x—§%(28—1}}

and for these values of ¢ the function ¢, 1s given by Formula {2.4) with
n =8 , FPor the succeeding segment [x,_., x;_;

-;.—[xm%@s_ 1)]<t<—é [x——;g‘(%—wj

and in (2.%) one must now set n =8 - 1 , and so on. If x and ¢ are
given, then from these inequalities we determine the number of the segment
to which the point x belongs at the instant ¢ . With the elapse of time
T = n/sV = 1 the position of the point x in relation to the ends of the
segment 1s repeated and, as the calculations show,
DO, 1) | g = Py (=, ¢ + 1) gy

Hence 1t follows that the solution constructed for @& and, evldently,
for ¢ and ¢ , is perlodic with respect to time.

At the points x = x, the functions & undergo discontinuitles, wherein

the magnitude of the jump is determined according to (2.5) and {2.8) by For-
mula {(Dk}'x::x’,l = @ (Tn + 0) — Ok (zn — 0) =

2‘\": (__.1)11, n/B

sinh 7Y,
0

The continulty in the potential « and the component of the electric fileld
E,= —d9/dy , tangent to the moving line x = x,, are, respectively, expressed

(in dimensionless quantities) by Formulas .10)

[Q (Zn— 1) -+ Qi (&0 + T))sisb i (Br — ) dv (2.9)

@ =—y{f+ 2 {Osinay, (B} = (1 — 2 (Dx}acosany

K=l k=1
The discontinulty in the magnetic fileld {f} in reality does not make a
contribution to {e} and {F,} : I1f we isolate from {® ]} the part connected

with the discontinuity {f}, then after some calculation Formulas (2.10) take
the form
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{g} = D) {Dx} sinayy, (B} = — D {@) agcosapy  (2.11)
k=1 k=1

Here {&, }* denotes the result of substituting in (2.10) only the continu-
ous part (*) of f(x). Consequently, {o} and {Z,} vanish together with (&%
A sufficient condition for this is, for example, that the function f(x,+ T)
be continuous and an even function of T when T&E [—n /B, n/Bl, since
then 0, (x,+ 7) 1n this interval is an odd function of T ,

Direct calculation shows moreover that

a0
lim = = of (ea£0),  lim 2 =0 (2.12)

x—>x, +0 9z x>, +0 8

i.e. 3p/3x 1s continuous at the points x = x,. It turns out also that all
the successive derivatives with respect to x are finite.

Accordingly, the constructed solutlon is simllar to the potential of a
double layer on the lines x = x,: the normal derivative on them is finite
and continuous, whilst the potentlal itself and the tangential derivative
have discontinuities.

3. The appearance of a discontinuity of the tangential component of the
electric fleld may at first sight appear paradoxical and contradictory to
the usual assumptions of electrodynamics concerning the continulty cf xT at
the interfaces between media (¥**),

In actual fact, this effect 1s connected with the assumption concerning
the exlstence of infinitely thin layers with nonzerc electrical resistence.
It is therefore appropriate to consider a simple model permitting study of
the discontinuitles in B¢ as the result of a certain limlting transition.

Suppose, for exampie, that the conductivity
4% f ¢ of the fluld in the chamlel 1s equal to o0, when
: 4 x| >n and 0, when |x| < n , where 05,0,
are constants (Fig.2). Then, retaining the
assumptions stipulated 1in Section 1, the cor-
z+h I ey regponding problem for finding the potential
has in dimensionless variables the form [2]
6 16| |6 o % —
! s éJ ”5;;+a—yz—=0 for 2 (— oo, h), (—h, k), (h, )

{q}} = 0, {1{3 %} =0 for == :t h (3.1)

T

Fig. 2 o
ve—0 for |x]—> o0, 37},=—f(¢) for y=7H1

The solutlion of this problem is given by the seriles

@=—yf(@)+ ) ¥, (2)sinoy
k=1

#) If the function [f(x) is representtd in the form

f (@ = fo{z) + Zam (2 — &), a; = const, b, = const
where n 1s the Heaviside unit function, /. (¥} is a continuous function,
then Jfo(x) 1s called the continuous part of /{x) .

*%} Other problems can also be cited where this condition is not fulfilled.
For example, in s study of the electric fleld in a channel with dilelectric
partitions [6] a discontinuity of B, was found along the partitions.
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V= Cpe® + Ly(a,— o) for a&(—o0,h)
¥y={¥y= zkeakx-f- D2ke-—akx 4Ly (x,0) for z&{—h, h)
Vo= Dye 4 Lz, 00)  tor 2E (b, )
x

Wy I - f -
Ly (=, a}:-z-g:; [e"k“:s e ) ds— e W Ty (s)ds]
a @

The constants ¢,,, D,, are determined by extremely cumbersome formulas,
only one of which will be reproduced here, (¢ = ce/oj

Cyy — Dy, = [20 inhoyh - geoshar, h)™1] X
X {0 [Ly (hy 00) — Ly (—h, —o0) ~— Ly (h, 0) + Ly (— b, O)] + (3.2)
+ =D R+ (— )] + Ly (h, 00) + Ly (— by — oc) — e [ L) (, 0) + Ly (— h, O)1}
enabling us to find the quatities (*)
V= Wy (h) — ¥ (— h) = 2uisnth (Cyy, — D) + Ly (b, 0) — Ly (— b, 0)

v, )
B |ey = % (Con — Do) (3.3)
We shall assume that &<€1 and k<€ {1 then

O thoy Ml Ve
ogh e 9 (x=0 K

The ratio h/e = R characterizes the electrical resistance of the layer
(—n, n) . Ifas hn -0, ¢ -~ 0, the resistance A 1ncreases without limit
or tends to a nongero limit, then 1im ), 18 finite and nonzero {vanishing
is possible, given a special choice of [(8)), whilst (8¥,/ dx) > o If,
however, ® - O , then V,~ 0 , and the behavior of (6‘I'k/6x)x=0 can then
be different. We note also that when & - const 2 0 the current J, at the
section x = 0 also tends to a conastant value, which decreases to zero wlth
increase of the limiting value of R .

Accordingly, to the discontinulty ¥, at a certaln line (i.e. the discon-
tinuity of the potential o )} there corresponds an infinite growth of the
normal derivative aqp/ax at the internal points of the narrow layer with
small conductivity, contracting to a line of discontinuity.

The condition of continuity of B, in the general theory follows from
the assumption of boundedness of E, . From the foregolng example 1t follows
that this assumption may not be fuifilled, and then there will exist a dis-
continuity in Ey . The infinite growth of ZF. may moreover, as for example
in Section 2, not appear clearly in the problem, since the solutlon for the
infinitely thin layer with small conductivity is not consildered.

Formula (3.3), when ¢ = O , takes the form

Ve — (3-4)

(SO &K f (s)ds + i e (s)ds) + 0 (49,

n —h
V= — a0y [S eak(h—s)f (s) ds -+ S eak(h+5)f ) ds] (3.5)

Suppose that the distribution of magnetic fileld when x > » and x <—h
is determined only by the distance from the points & » , respectively, l.e.

_fa,{z—h) qor T >0
1@={0h e ean

*) In (%.2) and the remainder of Section 3 1t willl be assumed that the func-
tion f{x)} is continuocus everywhere on the axls.
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Tren from (3.5) we obtailn Expression

0 0
-aRs 2,8
Vi === a0, [S e " g, (s)ds+ S e® g, (%) ds] (3.6)

00 00
which is independent of h and coincides with the principal part of (3.4)
when ¢ <€ h. Thils formula expresses the fact, natural from the physlcal point
of view, of the exlstence of a difference of potentlal between the points of
two arbltrary isolated noninteracting regions, in each of which the potential
is determined by its "own" magnetic field.

The solution constructed in Section 2 can be consldered in the neighbor-
hood of the points x = x, as the result of the limiting transition of the

type R -~ » . In fact, the dimensionless resistance of the layer (x,-—h,
X+ h) xpth
R= S vldz

xp—h
for finite h and § = cos®pg 1is infi-
nltely great because of the divergence
of the integral.

From this it is to be concluded that
the solution.of Sectidn 2 corresponds
approximately to the distribution of con-
ductivity

{ cos? B¢ for & [x,+h, 2, —h]

e for z& [z, —h, z, 4 h]

H

/
=~

TR
o

T
|
H

and glves values of the potential 1n the

reglons [z -+ h, 2, ,— Il

ylz,/1,t) z=q
4, We consider in conclusion an

bél example making use of the Formﬁlas of
z=4a, Section 2. We shall assume that the
M_ magnetic field 1s given in the form of
0 t a step-function (/l.'l)

Flg. 3
Ny O e 20 (@) = 8 ()
f(l’) - ‘1 (') - {1 for I>U, ,n (CC) - & (T)

Suppose that as time t varies in the limits from — 4% to + % , the
point of discontinuity of the field x = O belongs to the segment [_z_l, x()]-
The location of the ends of the segment 1s moreover determined by Equations
e Ho=Vtd o

Calculation by the formulas of Section 2 leads to the followlny expression
for & when [t| < % :

"U for 1>l’o and T < Z_1
KTy cos Mtcosh T (X8 - V2)--sin Usinny (8 - 1an)] for 3, L2 L0

Ty —:Vt'—'

O, = :
} K*|1; cos {t cosh, (1L — 1/27) - $in A sinhfy (78 — 1amt)] tor 0 <z < 29
.. S n '
A= = Y 8inh 7Y, €OS 3 sinh T (ﬂt + v B.A ) (/,2)

The true potential ¢ 1s 1ldentically equal to zero when x <-n/a and
y when x > n/g8 for all instants of time.
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The meaning of this result 1s clear: for all values of ¢ when x<-—-n/8
there is no magnetohydrodynamic interaction, whilst when x > n/B there 1s
no current, only a charge distribution. Currents can exist only inside that
unique segment to which at a given instant belongs the point x = 0, where
the field is included. The flow pattern of the currents does not differ
qualitatively from the case of constant conductivity, 1.e. the currents when
x > O are directed on average agalnst the electric field, and when x < O
with the fleld, forming a closed loop.

In Fig.3a, the region in which ¢ varles perlodically with respect to ¢
for each x 1s depicted in the xt plane (a serles of parallelograms)., The
corresponding curves are schematically shown in Fig.3b,

We note that ¢ varies contlnuously in the transition through the verti-
cal sides of the parallelograms and vanishes at these points, whilst at the
inclined sides ¢ undergoes discontinuities.

We shall now calculate the Joule dissipation in such a flow.

It is evident that from the usual formula

oo 1
o = LB S S_{%dxdy (4.3)

—o0 ~1
and so when ¢ = const 1t follows that

[oe]

@ = Lo \ gh,/dx dy

Taking account-of (1.4),(1.6),(4.1) and (4.2), we can moreover write

Xo

2UB¢%%0 «
Q= "2 (— >*+1§ ¥ () O (=, 1) dz (4.4)
k=1
Hence, substituting Expression (4.2) for @&, we obtaln
o0
_ U2B¢%6%503 N 7,(t) 1 4.5
Q - 2 i akéY;;sihhnT;\- ’ |t|< /2 (1' )

k=t
Qx (t) = (T/;z — 1) (COS 2nt coshz']’;fﬂt -+ coshﬂ'rk) -+
—+ (Tkg + 1) (COS 2ﬂtooshf[']’/.- -+ coshz']'kﬂt) + 2']’,, sin 27t sinh 2]’/¢T[t

If we now pass to the dimensional time né6¢/BU and subsequently let
g — O, then in the limit we obtain the well known result for flow with con-

stant conductivity [2] =S
. '16U2B026250 2_-" 1 (4 6)
Q - 8¢ = (2k —1)3 )

This limiting transition is valid only for |t| < % , since g¢,.(x %) = O.
Averaging over one period, the amount of dissipation 1is

Y, *
U By 262 50'3 qr
Q* = & th 2 EJ dk‘TksihhﬂTk

5742 - 1 sinh nr,.

ql\'* p— W T, + (‘]’;\ -— 1)coshn']’}\ (/1.7)
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Because of the presence of zones with small conductivity, when g -~ O
the dissipation tends to a quantity equal to one half of (%.6).

In the other limiting case, for very large values of 8 , the following

asymptotic formula holds: 0
U2B 6%, 1
* Y D000 2 __ _
Q*~ gy - (4n® — 15) ,Z"l TP (4.8)

The decrease of 0* with increasing 8 has an obvious physical meaning,
since then the region in which the currents flow 1s contracted proportionally
to 1/8 and the strength of the currents remains bounded.

We note that the value of the conductivity averaged over the whole channel
Oy = %oo for all B # 0 and for all instants of time. The value of the dis-
sipation ¢, in the channel, calculated according to theory with constant
conductivity, 1is therefore determined by Formula (4.6), where o, must be
replaced by o, . It 1s easy to see that in the general case 0,(0,) #¢*(8),
moreover the difference between these quantities becomes particularly signi-
ficant if § :;>1, when, according to (4.8), the quantity ¢@*(8) 1s very small.

The results obtained in Section 2.4 can be generalized to the case of the
more complex law of variation of conductivity

o = oorcos? By (s —Ut)  tor w—ULE [Ey Bl (k=0 £ 2. )

where Ok, §k and ﬁk ;> 0 are arbitrary numbers. If in the lntervals
1€k-1, Ex] the quantity cos BiE does not vanish, then construction of a
continuous solution 1s possible.
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